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Abstract—This paper discusses machine learning and data
mining approaches to analyzing maritime vessel traffic based
on the Automated Information System (AIS). We review recent
efforts to apply machine learning techniques to AIS data and
put them in the context of the challenges posed by the need for
both algorithmic performance generalization and interpretability
of the results in real-world maritime Situational Awareness
settings. We also present preliminary work on discovering and
characterizing vessel stationary areas using an unsupervised
spatial clustering algorithm.

I. INTRODUCTION

The Automatic Identification System (AIS) was conceived
primarily as a navigational safety tool for collision avoidance
and for supporting vessel traffic services in ports and harbors
[1]. The AIS is an international standard protocol that lets ves-
sels communicate information about their identity and journey
to other vessels and to ground-based stations. Vessels equipped
with AIS systems periodically broadcast static information,
which includes the Marine Mobile Service Identifier (MMSI),
name, flag country, dimensions, ship type; and dynamic infor-
mation. which includes position, speed-over-ground (SOG),
course-over-ground (COG), next port of call [2]. Soon after
the introduction of AIS in 2002, it became evident that the
information in the transmitted messages could also support the
Maritime Situational Awareness (MSA) activities of nations
concerned with the security of their sea borders and with
understanding the maritime activities within their territorial
waters and globally [3].

In the past decade, maritime traffic, global compliance with
the AIS standard, and new AIS base station installations world-
wide have increased. The result has been larger and larger
volumes of AIS data, which challenge the human operators
of MSA systems with information overload. Recognizing the
need to aid the operators cope with and make sense of the
vast amounts of AIS data, researchers have studied how to
apply computer-based techniques from machine learning and
data mining to analyze the AIS data, extract the relevant
information, and support the human analysts in their decision
making. Today, automatically discovering and characterizing
the activities of vessels through the use of machine learning
and data mining techniques are key tasks for achieving MSA.
A rich literature of published results now exists, demonstrating

successful case studies in vessel traffic pattern discovery, route
prediction, and anomaly detection [4]-[6].

At the same time, automatic vessel traffic analysis is matur-
ing from the early stages, where demonstrating the applicabil-
ity of individual techniques on specific problems is the primary
goal, to studying more comprehensive data analytics systems
that support a range of activities related to vessel traffic
analysis for MSA [7]-[9]. Transitioning to real-world, opera-
tional systems poses challenges of data provenance, sampling,
representation, scalability, generalization, and interpretability
[10]. We defer the discussion of how Big Data technologies
[11] can meet some of these challenges. We focus instead how
machine learning approaches generalize to a broad range of
real-world MSA scenarios and how their governing parameters
and inferences maintain an interpretable link to physical and
operational concepts. We discuss how scientists have partly
addresses these generalization and interpretability and some
possible future directions.

A particular problem of interest for MSA is detecting and
characterizing vessel stationary areas, which can be thought
of as small, geographically limited areas where one or more
vessels proceed at slow speed. We present preliminary work on
discovering stationary areas automatically based on the vessel
behavior and show that both speed and direction could be used
in a detection scheme for such areas.

II. EXISTING MACHINE LEARNING AND DATA MINING
APPROACHES TO VESSEL TRAFFIC ANALYSIS

Existing machine learning approaches to vessel traffic
analysis can be divided in two categories: point-based and
trajectory-based. Point-based approaches assume that an un-
derlying stochastic process generates the maritime traffic, and
treat AIS messages as independent, identically-distributed (iid)
samples of the hypothesized process. Geographically disjoint
grid cells are assumed independent of each other, so that
the relevant quantities from AIS messages originating within
a given cell, such as number of messages in a cell, vessel
velocities, etc. are statistically independent of the quantities
in neighboring cells. The independence assumption in point-
based approaches simplifies the counting, averaging, and
binning tasks that form the core of density estimation and
prediction algorithms in support of maritime traffic analysis.
Under the point-based approach, a fundamental data structure



that supports machine learning algorithms is the geographical
grid size.

A drawback of point-based approaches is that they forgo
the possible performance gains that could be obtained by
accounting for the spatial correlations between the AIS-
provided locations of each vessel. Trajectory-based approaches
partly address this drawback by first estimating each vessel’s
trajectory from the spatio-temporal distribution of that vessel’s
AIS message stream. This approach requires more complex
operations and careful bookkeeping in the first stages of
the analysis, but the trajectory objects produced by these
early operations can provide a richer knowledge base for
downstream analyses. Thus, in the trajectory-based approach,
a fundamental data structure that supports machine learning
algorithms is the vessel trajectory.

A. Point-based Approaches

Ristic [12] proposes a point-based approach to modeling
the normal maritime traffic patterns in a geographical area,
in support of anomaly detection. The area is subdivided in
independent, non-overlapping cells, and the number of AIS
messages transmitted from each cell is modeled as a Poisson
point process. The corresponding distributions of vessel veloc-
ities, as reported by the incoming AIS messages in each cell,
is estimated by kernel density estimation (KDE).

Given the localized, cell-specific models of baseline traffic,
anomalies in the number of messages and in the velocity
profile can be detected statistically. In that study, the number of
messages is flagged as unusually high (or low) if it surpasses
(or remains below) a threshold derived from the quantiles
of the underlying Poisson process. Similarly, a quantile-
derived velocity threshold, based on the within-grid velocity
distribution estimated with KDE, discriminates the anomalous
velocities from a credible range of acceptable values. The
author demonstrates the applicability of this approach with
a dataset of AIS messages comprising two weeks of test data
and four months of training data from Sydney Harbour.

A study that models the maritime traffic in Port Ade-
laide [5] also adopts KDE to estimate the joint location and
velocity densities and quantile-based thresholds for flagging
anomalies. In that study, vessel trajectories originating from a
common location form the training data. In this case, velocities
and locations from raw AIS messages form feature vectors
used for estimating multivariate densities. The feature vectors
are assumed iid, so no correlation between subsequent AIS
messages that form each vessel’s trajectory is considered.
Instead, trajectories are intended as sequences of AIS messages
grouped by MMSI, and are used only to define traffic patterns
originating from a common grid cell. The proposed approach
is appropriate for ports, where traffic originates from well-
defined locations.

Rhodes et al. [13] build on their earlier work in associative
learning and neural networks applied to maritime surveillance
[14], [15], and present an algorithm that learns normal traffic
patterns in support of predicting future vessel locations within
a temporal horizon of 15 minutes. The proposed algorithm

uses outstar learning learn associations between the current
geographic location of a vessel and the likely future vessel
positions, on a pre-defined grid. The stronger the association
between a current and predicted cell, the more likely a vessel
will occupy the predicted cell. The authors give a probabilistic
interpretation of the cell associations as empirical conditional
probabilities of future vessel locations conditioned on the
current vessel location report, so the proposed technique does
not rely on explicitly modeling the local densities.

A similar, but independent, point-based method [16] applies
association rule mining [11], a classical data mining technique
used in E-commerce, to the problem of estimating future vessel
locations from current AIS data. The algorithm identifies
frequently-occurring pairs of time-consecutive vessel loca-
tions, thereby learning the frequency of association between
the grid cells. The association can then be used to predict
future vessel locations conditionally on current locations. This
approach is prone to producing geographically discontinuous
vessel tracks, because it does not enforce any spatial continuity
of the co-occurring locations. The authors address this issue
by introducing a Markov transition matrix that smoothes the
predicted vessel locations. Nonetheless, discontinuities may
persist, as only the frequent location co-occurrences are iden-
tified.

B. Trajectory-based Approaches

A recent trajectory-based approach [8] uses similarity-based
and kernel-based machine learning methods to cluster and
classify vessel traffic and to detect anomalous vessel behav-
ior. The approach first compresses the AIS messages from
each vessel into piecewise linear trajectories using standard
geometric operations. Then, kernels are defined based on
appropriate similarity functions that measure how well any
two given trajectories are aligned. These alignment-based
trajectory similarities form the kernels that power trajectory
clustering with kernel k-means, classification with support
vector machines (SVMs), and anomaly detection with single-
class SVMs.

The authors of that study explore the applicability of
dynamic time warping and edit distances to the problem of
measuring the similarity between trajectories defined in a
multidimensional space by the locations and velocities of the
vessels. These measures are based on the notion of geometrical
alignment between piecewise linear (in the multidimensional
space) trajectories. The authors extend these geometric align-
ment similarities to incorporate semantic similarity, which
captures the similarity of the types of geographic areas visited
by the vessels, as categorized in external knowledge bases. The
authors show that the derived enriched similarity kernels can
improve the clustering and classification, but anomaly detec-
tion does not benefit from the additional domain knowledge.

Another approach is Traffic Route Extraction for Anomaly
Detection (TREAD) [7], which was co-developed by one
of the authors of this article at the Centre for Maritime
Research and Experimentation (CMRE). TREAD is a hybrid
trajectory- and point-based approach that does not rely on fully



formed vessel trajectories, but at the same time considers the
sequential ordering to the AIS messages from each vessel.
For TREAD, the fundamental data structure that supports the
learning algorithms is the vessel object, identified from the AIS
messages by its MMSI, and described by its corresponding
static and dynamic attributes contained in the AIS messages.
TREAD is general framework for maritime traffic character-
ization that produces dictionary of historical vessel patterns-
of-life, which can be used as prior information for activity-
detection algorithms,

As afirst step, TREAD uses the unsupervised spatial cluster-
ing algorithm DBSCAN [17], [18] to cluster waypoints, which
are locations corresponding to stationary areas, entry, and
exit points for a selected geographical region. The waypoints
are linked together to form route objects, based on the AIS
attributes of the vessels whose messages contributed to the
formation of the waypoint clusters. The result of applying
TREAD to a geographical area is a dictionary of waypoint and
route objects, adorned with dynamic and static AIS properties.
This enables further exploratory analysis of major routes and
waypoints that is not limited to location, and instead spans
informational attributes, such as flag state, direction, velocities,
destination, etc. The resulting knowledge base can be used
in support of MSA activities, such as anomaly detection.
A distinguishing property of TREAD is that its clustering
operates in an incremental mode, so that new data points
can be assigned to existing clusters in real time and update
the cluster definitions without extensive model retraining: the
clusters can be merged, split, removed, generated as new data
arrives. This approach incurs a greater cost in the early stages
of the analysis, because of its bookkeeping complexity and
its required integration with databases, but simplifies model
training and updating when new data arrives.

III. GENERALIZATION AND INTERPRETABILITY:
PERFORMANCE METRICS, HYPERPARAMETERS, AND DATA
DENSITY

Researchers’ interest in machine learning and data mining
applied to maritime vessel traffic analysis has produced a
range of approaches, published in the scientific literature.
Taken individually, each of these published feasibility studies,
concept demonstrations, or proposed frameworks has posi-
tively contributed to this field of research. As the research
community progresses toward making these techniques oper-
ationally viable in the broader context of real-world MSA,
it must contend with the challenges of generalization and
interpretability.

Generalization is the ability to apply a proposed technique
to a broad range of situations. In particular, a technique that
generalizes well does not require extensive re-tuning of the
relevant algorithms when it is applied to different data sets
and supports a variety of operational scenarios for MSA.

Interpretability is the ability to relate the algorithmic per-
formance metrics and the parameters of a proposed technique
to given key performance indicators (KPIs) of operational

effectiveness and to physical quantities. In particular, an in-
terpretable technique aides the smooth handshaking between
operations and experimentation, which favors the transition of
research concepts to real-world scenarios.

Generalization and interpretability are interconnected
through performance metrics, parameter tuning, and their
dependency on the data sources. Consider the performance of
unsupervised learning algorithms. A difficulty with unsuper-
vised techniques is that there is no ground truth for assessing
the correctness of the discovered patterns, a task left to the
researcher, who often “eyeballs” the results. This is fruitful
in the beginning stages of any analytic task, and indeed the
typical role of unsupervised learning in a larger data analysis
system is exploratory and to provide a first glimpse at the
hidden structure in a dataset. At the same time, this injects
subjectivity in the performance assessment that can make the
results difficult to interpret by end-users who did not originate
a particular approach, and the techniques difficult to generalize
to a broad range of real-world operational settings.

One standard objective strategy to assess the performance
is to create manually a reference dataset for comparison.
This strategy enables using standard supervised learning per-
formance metrics, such as precision, recall, false positive,
false negative, area-under-the-curve (AUC), etc. , to assess the
performance of an unsupervised learning task. This strategy
was adopted to assess the performance of the kernel k-
means clustering algorithm applied to a set of vessel trajec-
tories extracted from AIS data gathered around Texel Island,
Netherlands [8]. In that work, a set of 714 vessel trajectories
was clustered into 8 hand-labeled clusters, and the adopted
performance metric was the F'l-score, a standard objective
measure of performance in data mining tasks.

The lack of ground truth also arises in anomaly detection
tasks, for instance when a vessel veers off-course, or proceeds
too fast compared to normal behavior. As for clustering, one
could manually label a reference data set, and use standard
supervised learning performance metrics. This strategy was
adopted in a vessel trajectory anomaly detection task docu-
mented in the same study as the clustering task [8]. Single-
class SVMs were trained on 747 normal trajectories, and used
to detected 39 hand-labeled anomalous ones. Precision was the
adopted standard performance metric. In both clustering and
anomaly detection tasks, a remaining, unaddressed difficulty is
that manually labeling the data is a laborious, time consuming,
error prone and subjective task that does not easily generalize
to different and larger datasets: For larger datasets, manually
labeling data may not be an options

Another strategy to address the lack of ground truth in
anomaly detection is to apply statistical outlier detection
techniques. The decision is based on a threshold of statistical
significance derived from estimated probabilistic models of
the data. Thus, there is no need for ground truth as a term
of comparison: instead, the standard performance metrics
probability of detection. Py [12] or probability of false alarm
Py, [5] can be used in this case. This strategy is particularly
well suited for unsupervised statistical learning approaches



where a probabilistic model of vessel traffic normalcy is first
learned, and then used as a term of comparison for detecting
anomalies.

A recent maritime traffic anomaly detection study [12]
adopts the statistical outlier detection approach. In the study,
the number of AIS messages and the vessel velocities observed
at grid locations are assumed random variables and modeled
probabilistically using kernel density estimation (KDE). New
data were declared anomalous if the number of messages or
the velocity values surpassed a statistical significance threshold
of 0.01, meaning that the probability of detection is chosen
at 1%. In the study, the strategy gave detection rates of
2.2 anomalies/hour and 4.8 anomalies/hour, which the author
judges an improvement compared to typical human operator
load.

Generalization and interpretability challenges also arise
from the need to tune the parameters that govern the machine
learning algorithms. For example,consider the unsupervised
clustering algorithm DBSCAN. It can flexibly cluster spatial
points without relying on a labeled set of training data and
without a priori knowledge of the number of clusters. Two
parameters influence the outcome: the radius of the neighbor-
hood around a given point for evaluating cluster membership
of candidate, neighboring points, and the minimum number
of points required for a cluster. In turn, these parameters are
sensitive to the density of the points in a data set: more
spatially dense datasets require a smaller radius and a lower
minimum number of points.

An approach to selecting the radius and the minimum
number of points could be cross-validation, which is a widely
used, empirical technique for selecting the optimal parame-
ter values for machine learning algorithms by testing each
parameter from a range of possible values. Unfortunately
it has limited applicability to unsupervised algorithms like
DBSCAN, because it requires a performance metric against
which to measure the efficacy of the selected values. We have
already explained that performance metrics can be difficult to
define in unsupervised learning settings.

For DBSCAN an effective strategy to set the parameters
has been to use expert domain knowledge. Our own expe-
rience working with the DBSCAN-based TREAD algorithm
has been that by following common practices and guidelines
from subject matter experts in maritime traffic monitoring
TREAD produces interpretable results [7]. Other researchers
[4] have taken the same approach and adopted commonly-
used parameter values to identify fishing vessels from AIS
trajectory-derived signatures. In that study, a DBSCAN-based
algorithm was also employed.

Another approach to selecting the parameters is to adopt
their theoretically optimal values based on a hypothesized
mathematical model of the data. For example, theoretically
optimal settings exist for the bandwidth parameter for KDE,
and indeed in two maritime anomaly tasks, the optimal band-
widths were selected for n-dimensional Gaussian kernels [5],
[12], thereby eliminating the need for cross-validation.

Grid cell size is another parameter that critically affects

the performance of point-based approaches to maritime traffic
analysis, which rely on counting the number of AIS messages
in each grid cell. The cell size must be large enough to
capture a sufficient number of AIS messages for building
robust local statistical models, but if it grows too large, the
predictive usefulness of the models could be weakened by
the lower spatial resolution. This imposes practical limits on
the application of point-based approaches to areas where AIS
messages are sparse. Trajectory-based approaches do not rely
on grids and instead form trajectories, so are less influenced by
data sparsity, but not completely immune: Sufficiently dense
sub-areas must exist within a region of interest to spatially
cluster the waypoints that define a trajectory [7] or to form
robust piecewise linear approximations of vessel trajectories
[8].

For the above reasons, we expect that the optimal cell size
for a given geographical region depends on the AIS message
rate and coverage in that region, as demonstrated by the
variability of chosen cell sizes in the literature: a study adopts
a cell size of 0.1deg x0.1deg [16]; another study adopts a
much finer grid of 0.002 deg x0.002 deg [12]. In those studies
adopted size, like the other parameters, are set manually based
on expert knowledge of the region of interest or driven by
computational and operational constraints.

A strategy for automatically setting the grid size is to adopt
a multi-scale grid, where the cells of different sizes cover an
area of interest [15]. Under this strategy, larger cells cover
areas where AIS messages are more sparse, and smaller cells
cover areas where AIS messages are more dense. This is the
typical case of port and harbor areas, where maritime traffic
converges from the open sea, where traffic is more sparse. In
a maritime traffic prediction study of the Port of Miami [19],
four grids of different cell sizes where chosen, achieving a
closer approximation to a desired level of recall performance
than a single-size grid. Although the study does not articulate
a fully automated parameter learning procedure, this strategy
suggests that cell sizes can be adaptively chosen according to
a desired performance goal.

From the above discussions a more general point emerges.
Parameters that represent physical quantities relevant to mar-
itime vessel traffic (i.e. cell size, neighborhood radius, data
density) and that influence the effectiveness of machine learn-
ing approaches could be automatically chosen as a function
of performance parameters. Conversely, given the parameters
relevant to a geographic region or dictated by operational con-
straints, the corresponding bounds on the achievable perfor-
mance could be estimated prior to carrying out computation-
ally expensive machine learning experiments. We hypothesize
that the relationships between performance and parameters
could take the form of mathematical functions, table lookups,
or well-documented “rules-of-thumb,” and that data mining
techniques for massive data sets [10], [11] can help discover
these relationships. The availability of this knowledge will
provide operators in real-world MSA scenarios and machine
learning scientists in the laboratory with a common reference
for effectively navigating the often murky waters of general-



ization and interpretability.

IV. WORK IN PROGRESS: DISCOVERING AND
CHARACTERIZING STATIONARY AREAS AND VESSELS

A problem of particular relevance to MSA is discovering
and characterizing vessel stationary areas, which are small,
geographically circumscribed areas where vessels proceed at
slow speed or are stopped. Stationary areas are particularly
important because they often correspond to the location of
strategic and logistical nodes in the maritime traffic network.
Ports are obvious stationary areas, and harbour entrances,
offshore platforms, traffic choke-points, anchorage areas are
other examples.

When vessels proceed at slow speed or stop in locations that
do not match the a priori knowledge of stationary areas, further
analysis is required. It could be that the slow moving vessel
is loitering in pursuit of illegal activities or is having engine
trouble. Another possibility is that the newly discovered sta-
tionary area reflects an emerging local traffic pattern, perhaps
as the a result of newly-established waiting areas near a port, or
physiological changes in regional maritime traffic trajectories,
for example due to seasonal weather patterns, piracy activity,
etc.

In this work we focus on the exploratory aspect of the
analysis of stationary areas. We use the TREAD algorithm
with AIS data to discover the stopping areas from maritime
traffic patterns in a given region, and to characterize the traffic
patterns specifically of the vessels that visit the stationary
areas.

Once derived, stationary areas can be intersected with the
context information. Stationary areas which do not correspond
to any known stationary areas are of particular interest. As
an example, stationary areas which fall far from the coastline
and do not match with the location of off-shore platforms, can
potentially be either anchorage areas, fishing areas or loitering
areas.

The first step is to assign the labels “vessel is sailing” or
“vessel has stopped” to segments of each vessel track. This
is achieved by Algorithm 1, which is a speed change point
detector that operates on the available AIS data for each vessel
in a given region of interest and for a given time window.

Algorithm 1 Vessel Motion Status Detector

Require: V, v // list of all the vessels entered in the area, V,
and Vessel of interest, v with a given M M ST
Require: v.trackiqstoam, v.S0G, SPEED,,in,
SPEED,, .., sampleyiah
1: while VT rack;y,sioag > sampleyiqin do
2:  Dist(v.track(end — samplewiqin), v.trackend)) <
AS

3: wv.Time(end) — v.Time(end — sampleyian) < AT
4: % <+ v.avg_speed [/ observed average speed shown
by the vessel

5. if v.avg_speed > SPEFED,,,, then

6: Vessel is sailing

7:  else

8: if v.avg_speed < SPEED,.,| v.SOG <
SPEFED,,;, then

9: Vessel has stopped

10: end if

11:  end if

12: end while
13: return Vessel Motion Status

For each vessel of interest v, the velocity v.avg_speed is
estimated from the reported AIS positions and timestamps.
Simple thresholds on the speed determine if the vessel is
moving or stopped (i.e. is in port). The detected stopped events
are then clustered using incremental DBSCAN [18], which is
embedded in TREAD, producing coherent spatial clusters of
“vessel stopped” points: these are the discovered stationary
areas.

Fig. 1 shows an example of discovered stationary areas in
the Persian Gulf. For this analysis, we considered terrestrial
and satellite AIS data from the MSSIS network, spanning the
period of March 2, 2013 to May 7 2013. There were 12,051
unique vessels observed in the area. The most common vessel
types were 35.2% cargoes, 20.8% tankers, and 5.2% tugs. The
sationary area was formed by clustering the contribution of
1,779 which passed the speed gating threshold.

The discovered stationary areas may be further characterized
in terms of their directional characteristics. To do this, we
consider the vessels that visited a given stationary area and
study how the COG changes over time. The idea is that
sailing vessels typically hold a steady course and therefore
the reported COG in the AIS message is approximately
constant. Conversely, when vessels are anchored or moving
slowly within a confined area, the reported COG changes
significantly.

As an example, we analysed the track reports form the 24
hours preceding a vessel ending a trip in a stationary area.
Fig. 2 shows the track of a cargo vessel in the Persian Gulf,
along with its kinematic features. As we can see, it is possible
to characterize the transition phases when the vessel stops or
starts sailing again after stopping. COG changes which are
more significant in absolute values and more persistent in time
in correspondence of SOG values higher than SPEED,,;, =
lknots but lower than SPEED,,.. = bknots which is
a maximum threshold for speed provided by operators to
identify loitering vessels.



Fig. 1. Stopping areas, denoted by green polygons discovered in the Persian
Gulf with TREAD. The polygons are overlaid with local Exclusive Economic
Zones. Only the stationary areas a distance away form the shoreline are shown,
so as to not overcrowd the figure with known ports.

This analysis has been focused on measurements received
from AIS sensors but can be easily extended to data provided
from other sensors (e.g., coastal radars) from which the vessel
kinematic features can be estimated.
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Fig. 2. Example AIS real track of a stationary vessel in the Persian Gulf (top),
and its kinematic components (bottom). The COG changes more significantly
in correspondence of SOG values lower than 5 knots.

V. SUMMARY

We discussed the challenges posed by the need to apply
machine learning and data mining techniques to maritime
traffic vessel analysis. We highlighted how generalization and
interpretability can help transition research to real-world oper-
ational scenarios. We presented preliminary work on detecting
and characterizing stationary areas by using a spatial clustering
approach.
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