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ABSTRACT
Grace is a software platform for digital marketing that au-
tomates the process of empirical evaluation and optimiza-
tion of marketing campaigns targeting hundreds of millions
of customers with thousands of messages. It measures the
lift in performance produced by various messages using con-
trolled experiments, and it uses a novel combination of learned
decision trees and multi-armed bandits to target each cus-
tomer with the right message to maximize lift. The explo-
ration/exploitation trade-off is managed automatically by
employing a Bayesian approach, Thompson sampling. Per-
formance of the platform is demonstrated with a simulated
example, and with a deployed implementation within a pre-
paid telecom company with millions of subscribers, where
Grace generated tangible business impact by increasing rev-
enue compared to business as usual.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods, and Search;
G.3 [Probability and Statistics]: Probabilistic algorithms

Keywords
multi-armed bandit, Thompson sampling, decision tree, con-
textual marketing, experimental design

1. INTRODUCTION

1.1 Overview
In the world of marketing, it is well known that different

people respond differently to different advertisements. Obvi-
ously, showing the same ad to every target will not produce
the best response.

Ideally, marketers would like to craft the optimal mes-
sage for every target where possible. In theory, there are a
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number of platforms where this is possible, such as mobile
phones and websites. However, there are two fundamental
challenges that make this difficult in practice.

First, a metric needs to be selected that defines what it
means to be “optimal,” and that metric needs to be mea-
sured in a reliable way. Different marketing campaigns may
have different goals, leading to different choices for the key
performance indicator (KPI) to be optimized. For exam-
ple, one could optimize for short-term revenue, full customer
life-cycle revenue, or customer loyalty. Some KPIs are more
easily measured than others, but in any case in order to
measure the effect of a given campaign on the KPI we need
to compare with a control group. Without control groups, it
is impossible to know if a given campaign is better or worse
than doing nothing.

Once sound metrics and controlled trials have been set up,
the second challenge is to select messages for each target to
optimize the KPI. In an age of telecoms and websites with
hundreds of millions of subscribers, such a task is daunting.
On the other hand, with such large subscriber bases, even a
small improvement can add up to substantial revenue.

In this paper we will describe Grace: a software plat-
form that addresses these two challenges in a scalable way,
so that customer bases in the hundreds of millions can be
served with marketing in a way that is optimal for each in-
dividual. Grace automates the design and execution of ex-
periments over thousands of market segments and messaging
variations, to evaluate the effectiveness of all these combina-
tions at a much faster pace than previously possible. Grace
discovers the most influential attributes of subscribers and
messages that drive performance, and finds pockets where
some types of messages are particularly effective or ineffec-
tive against specific types of individuals. Finally, Grace ac-
tively adjusts which messages are sent to whom based on
these discoveries, to maximize the KPI over the whole target
population. It automatically balances the competing needs
to explore the space of responses for improved learning, and
to exploit that knowledge to increase performance.

In this way, Grace relieves much of the burden from the
marketer to evaluate and optimize campaigns. Grace al-
lows marketers to spend their time working on higher-level
activities, finding creative ways to take advantage of the in-
telligence that Grace acquires for them.

The methodology behind Grace — including the experi-
mental framework, the message selection procedure, and the
learning algorithm — is detailed in Section 2. Then in Sec-
tion 3 we present simulation results on a small example for



illustration of how the system works, and in Section 4 we
report actual results from deploying Grace with a mobile
phone operator in the EMEA region. We close with con-
cluding remarks in Section 5.

To be concrete, our discussions will focus on the applica-
tion of Grace in the context of a mobile telecom operating in
the pre-paid space. Grace could be used in other contexts of
course. It is ideally suited to a situation where the relation-
ship between marketer and target is individual in nature,
but there are a huge number of individuals, a rich source of
data about them, and frequent interaction with them, such
as with mobile operators, financial services, or e-commerce.

1.2 Related work
The core technology of Grace is a decision tree of multi-

armed bandits. The multi-armed bandit [14] is a commonly
used model for decision-making under uncertainty, analo-
gous to a bank of slot machines. Each of a finite number of
actions (pulling the arm of a slot machine) produces a sepa-
rate random reward according to an unknown distribution,
and the objective is to maximize a cumulative reward over
some time horizon.

In the context of Grace, the “arms” of the multi-armed
bandit are the messages that may be sent to a collection of
users that are expected to have similar behavior. Thus, each
message may have a different reward distribution depending
on which type of user receives the message. To organize this
vast array of arms, Grace uses a decision tree that branches
over user properties and message properties.

Under some technical conditions, an optimal policy for
selecting actions for the multi-armed bandit is given by the
Gittins index [8, 21]. However, the Gittins index solution
can be difficult to compute and it can suffer from incomplete
learning, continuing to select suboptimal actions indefinitely
with positive probability [4]. A simple and popular heuristic
solution to multi-armed bandits is Thompson sampling [18],
also called probability matching; see [16] for a survey of
this approach. This technique chooses actions by randomly
sampling the posterior distributions of unknown parameters
of the reward functions and choosing the winning sample.
The posteriors are then updated using Bayes’ rule as new
reward observations are collected. For this reason, multi-
armed bandits played according to Thompson sampling are
sometimes called “Bayesian bandits.”

Thompson sampling is not only a simple heuristic to im-
plement; it has also performed well in experiments [6]. Re-
cent theoretical work on optimal regret bounds [1, 2, 5] may
justify its robust performance, and there is an argument for
Thompson sampling as a sound approach to more general
decision and inference problems [12]. It has been applied
to search query recommendation [9] and online advertising
[15], and Google Analytics Content Experiments uses multi-
armed bandits with Thompson sampling to test alternatives
for web content [17]. Thompson sampling scales reasonably
well with the number of arms since the sampling and updates
of the reward distributions can be done independently, and
the coordination procedure amounts to a simple max func-
tion. Still, applications of multi-armed bandits tend to be
limited to determining optimal choices over the whole pop-
ulation, not tailoring the choice to each user as desired for
1:1 marketing.

Contextual bandits allow the reward to depend on exoge-
nous variables such as user features, but algorithms seem

to be limited to models where the dependence is linear [3,
11] or smooth enough to be represented by kernels [10, 20].
Grace models an arbitrary dependence of reward on con-
text without any smoothness assumptions, through the use
of decision trees.

Decision trees have also been used in marketing applica-
tions [13]. Standard machine learning techniques can gener-
ate decision trees in an automated and scalable way; how-
ever, decisions made with them are deterministic, and there
is no accommodation of the exploration/exploitation trade-
off inherent in decision problems with incomplete informa-
tion.

From an algorithmic perspective, the novel contribution of
Grace is the combination of decision trees and multi-armed
bandits to provide a scalable framework for decision-making
under uncertainty.

2. METHODOLOGY

2.1 Users and messages
Consider a service provider that has many millions of

users, and provides a pay-as-you-go type service where the
more users consume the service, the more they pay. A typ-
ical example of such a service would be a mobile telecom
carrier in the pre-paid space.

The carrier would like to maximize revenue. In this ex-
ample, revenue comes from users consuming the service. So,
in order to increase revenue, the carrier must in some way
convince their users to consume more of the service. One
way to attempt this is for the carrier to conduct marketing
on their user base. The carrier has detailed knowledge of
each user, so this marketing can be very fine-grained. For
instance, the carrier has access to the user’s social graph
within the network, how the graph changes in time, billing
and usage time series, and so on. If one could make use
of this data in a scientifically sound way, the gains can be
significant.

We define a User as a collection of scalar attributes. The
attribute values maybe continuous (e.g., age or credit score),
discrete (e.g., number of calls in a day), or categorical (e.g.,
gender or preferred language). We treat discrete-valued
attributes the same as continuous-valued attributes in the
training and use of decision trees.

Age and gender are examples of simple attributes. A user
may have other scalar attributes which are not simple in
nature, such as one indicating membership in a cluster. Say
we cluster users on some number of attributes, and then
store the resulting cluster membership of each user in a new
categorical attribute. We call such attributes derived since
they are derivative of other attributes. User attribute values,
whether simple or derived, are entirely determined by the
behavior and properties of a user (or the user’s connections,
in the case of attributes that are “socially aware” such as the
degree of an ego network or PageRank).

Now define a Message as a collection of scalar attributes
that define marketing message one could present to a user.
For example, “Buy X within Y days and we’ll give you Z.”
Here X, Y, and Z are all scalar attributes of the message,
which could be either continuous or categorical. Further the
message could be worded in different ways but with the same
content, producing another categorical attribute, Message-
Tone say. Other messages may have no tit-for-tat aspect at
all, rather they are purely informative or educational: “Did



you know that you can save on data with one of our Data
Packages?” All the types of messages and their attributes
may combine to produce many thousands of variations.

Grace allows the marketer to define eligibility rules predi-
cated on user attributes. For example, marketers may want
to allow the Data Package message above only for users with
age greater than 18, say. The marketer will typically define a
set of alternative messages or parameterized messages, along
with eligibility rules shared by all messages in the set. This
combination is called a targeting group, and the definition of
targeting groups is the primary mechanism for the marketer
to influence the operation of Grace.

The task then, is this: given one user out of many millions,
pick the one message out of many thousands that maximizes
a desired metric, revenue say. Further, the message must
be picked so that performance against the metric can be
measured in a scientifically sound way. This leads us to the
topic of targets and controls.

2.2 Targets, controls, and experimental design
When one does experiments on a population of subjects, it

is standard practice to use control groups. A control group
is what allows the experimenter to draw causal inferences
between treatments and outcomes. In this regard, marketing
is no different than a clinical drug trial.

Grace uses the targeting groups created by the marketer
as a starting point for defining the experimental units for
assembling target and control groups. Users within the
same targeting group may be meaningfully compared with
one another since they are eligible for the same messages.
Grace refines the targeting groups further into subgroups
that have significantly different responses, as identified by
the decision tree generated from the previous marketing it-
eration. These subgroups, called contexts, form the experi-
mental units within which targets and controls are compared
to produce estimates of the average lift in KPI the targets
exhibit over controls. This subdivision of targeting groups
into contexts is a way of reducing the variance of the lift
estimates.

Targeting groups are also used to separate effects of dif-
ferent, simultaneous experiments. For example, if a user
receives a message from one targeting group, they would be
ineligible to receive messages from other targeting groups,
until a sufficient lockout period has elapsed. Control groups
are kept segregated from each other in the same way: if a
user is a control in one targeting group today, they will be
prevented from being a control in any other targeting group
until a lockout period has elapsed. Also, switching between
target and control from one day to the next is prevented by
Grace, for obvious reasons.

In any experiment, the marketer can choose the propor-
tion of targets to controls. For example, in the early stages of
a campaign, marketers may choose to be conservative with
a 50/50 or even lower split. As confidence grows, this ratio
can be dialed up. As Grace is assigning users to target and
control groups, it keeps track of this ratio, making assign-
ments as needed so that the actual ratio tracks the desired
ratio.

The marketer can also specify contact limits for each ex-
periment, and for the system as a whole, e.g., no more than
3 messages per week per user.

Besides using control groups to measure the effect of mar-
keting experiments, Grace uses controls in the performance

metric to be optimized when choosing a message for each
user. Given a specific KPI chosen by the marketer, such as
14-day revenue, Grace aims to optimize total expected lift,
i.e., the expected gain in KPI in the target population com-
pared to the control population. The model we use to select
messages to maximize lift is a decision tree of Bayesian ban-
dits, as described in the next few sections.

2.3 Bayesian bandits for message selection
Call the set of users U and the set of messages that can be

sent to them M . If we know the expected reward E{r |u,m}
for sending message m ∈M to user u ∈ U , then the optimal
policy is simply to send the one with the highest expected
reward:

argmax
m∈M

E{r |u,m}.

However, since we do not know the expected reward, we have
a multi-armed bandit problem. In that problem, there are a
number of “slot machines” with unknown payoff rates, and
the task is to find a strategy for playing the machines that
maximizes a (possibly discounted) expected reward over a
future horizon. There is an inherent exploration/exploitation
trade-off typical of decision problems with incomplete infor-
mation.

As discussed in Section 1.2, optimal policies for multi-
armed bandits are impractical to compute, but a Bayesian
approach that naturally addresses the exploration/exploitation
trade-off is Thompson sampling, a.k.a. randomized proba-
bility matching. In this framework, the uncertainty in our
estimates of expected rewards is quantified by posterior dis-
tributions of mean rewards given the observed data. That
is, E{r |u,m} is replaced by a random variable r̄(u,m) with
known posterior distribution. The selected message is then
the random variable

argmax
m∈M

r̄(u,m)

which is easily sampled by drawing samples of mean rewards
r̄(u,m) for each m and picking the m that provides the high-
est mean reward. When enough data is collected that there
is a clear “winner” among the mean reward distributions,
then this selection rule chooses the optimal message; oth-
erwise, other messages are sometimes selected, allowing the
mean reward distributions to be refined with more data.

In our marketing application, however, it is impractical to
maintain separate distributions of r̄(u,m) for each u and m,
as there may be on the order of 108 users and 104 messages.
Instead, we structure the space U ×M with a partition Π ⊂
2U×M defined by a binary decision tree, and approximate the
mean reward as identically distributed within each subset.
Each π ∈ Π has a single average reward r̄π, which in the
Bayesian bandit framework is a random variable.

Effectively, Π defines a smaller multi-armed bandit, with
each subset π corresponding to a single arm, which is related
to the original multi-armed bandit as follows. When arm π
is“played”for a given user u, a message is selected at random
from

Mπ(u) := {m | (u,m) ∈ π}
with uniform probability, and sent. The average payoff for
u is therefore

r̄π(u) :=
1

|Mπ(u)|
X

m∈Mπ(u)

r̄(u,m). (1)



We cannot maintain separate distributions for r̄π(u) for each
u, though, so we need to average over U in some way. We
select p(U), a probability measure on U which reflects the
distribution of user attributes in the population, so thatR
r̄π(u) dp(U) reflects the average per-user reward for play-

ing bandit arm π over the population. By playing the multi-
arm bandit to maximize this average, we aim to maximize
the total KPI over the whole population. In practice, p(U) is
derived from the emprical distribution of available samples
of user attributes in π.

The construction of the binary decision tree defining Π
is discussed in Section 2.5. Each interior node of the tree
splits on some user attribute or message attribute, and each
π ∈ Π is identified with a leaf of the tree. The unique subset
π(u,m) ∈ Π containing a given pair (u,m) is obtained by
walking the pair down the tree, taking whichever branch
applies to u or m at each node, until a leaf is reached.

To summarize,

r̄π :=

Z
1

|Mπ(u)|
X

m∈Mπ(u)

r̄(u,m) dp(U)

is the random mean reward associated with each subset π ∈
Π acting as an arm in a multi-armed bandit, and

m∗(u) = argmax
m∈M

r̄π(u,m) (2)

is the randomized probability matching selection rule. Algo-
rithmically, the procedure for selecting messages using the
decision tree of multi-armed bandits executes the following
steps for each user u:

1. For each m ∈ M for which u is eligible, walk (u,m)
down the decision tree to find π and sample r̄π to get
reward ˆ̄r(u,m).

2. If u is a target (not control), send message m∗ =
argmaxm ˆ̄r(u,m).

3. Update the distribution for r̄π∗ with observed reward,
where (u,m∗) ∈ π∗.

In our marketing application, we do not observe the reward
(lift in the chosen KPI) immediately; typically lift would
be measured over days or weeks. So instead of incremen-
tal Bayesian updates in step 3 we re-estimate distributions
in periodic batches, with data history windows much longer
than the delay required to measure the reward. The com-
putation of mean lift distributions is the subject of the next
section.

2.4 Lift computation
Because mean lift is the reward we maximize with the

multi-arm bandit, each subset π ∈ Π needs to contain sam-
ples from the target population and the control population.
Moreover, lift cannot be measured directly for any (u,m)
pair. Instead, the samples from U × M are divided ran-
domly into targets and controls, and what is observed for
each (u,m) pair is either the target KPI ρt or the control
KPI ρc. Furthermore, as discussed in Section 2.2, each sam-
ple is designated as belong to a particular context, which is
a subset of U defined with the intention that targets within
a context should produce similar responses to messages, and
likewise for controls. This allows us to estimate mean KPIs
reliably for targets and controls within a context with a rea-
sonable number of samples.

For a given subset π, let Γπ ⊂ 2U be the set of contexts
represented by samples in π. Let Rtπ,γ be the set of samples
of KPIs for (u,m) pairs designated as targets in π ∩ (γ ×
M) for a context γ ∈ Γπ, similarly define Rcπ,γ for control
samples, and denote their sizes as N t

π,γ = |Rtπ,γ | and Nc
π,γ =

|Rcπ,γ |. Given enough independent samples of targets and
controls in a context, we model our uncertainty about mean
KPIs in a context as normal random variables centered at
sample means:

ρ̄xπ,γ ∼ N (µxπ,γ , (σxπ,γ)2)

µxπ,γ =
1

Nx
π,γ

X
ρ∈Rxπ,γ

ρ (3)

(σxπ)2 =
1

Nx
π,γ(Nx

π,γ − 1)

X
ρ∈Rxπ,γ

(ρ− µxπ,γ)2 (4)

where x is either “t” or “c” in the above expressions. The
mean lift for a context is then

r̄π,γ = ρ̄tπ,γ − ρ̄cπ,γ ,

whose uncertainty is normally distributed:

r̄π,γ ∼ N (µπ,γ , σ
2
π,γ)

µπ,γ = µtπ,γ − µcπ,γ (5)

σ2
π,γ = (σtπ,γ)2 + (σcπ,γ)2, (6)

assuming target and control samples are drawn indepen-
dently.

Since the per-context mean lift r̄π,γ models a conditional
expectation E[r | (u,m) ∈ π, u ∈ γ], the total mean lift in
the subset π is a weighted sum of r̄π,γ over γ ∈ Γπ. If the
contexts were disjoint subsets, the weights would be proba-
bilities of the contexts under some distribution; however, the
contexts are not disjoint. Nevertheless, for the purpose of
assessing the lift that has already occurred within the target
population, a natural choice of weight for a context is the
fraction of the target population contained in that context:

r̄π =
X
γ∈Γπ

„
N t
π,γ

N t
π

«
r̄π,γ , (7)

where N t
π =

P
γ∈Γπ

N t
π,γ is the number of target samples

in π. We use the target population fraction instead of the
total population fraction (including controls) because lift
is attributed to targets only. With this weighting, N t

π r̄π
produces the correct value for total lift over the subset π.
Moreover, this is consistent with computing mean KPIs sep-
arately for target and control over all contexts then taking
the difference, if the control population fractions are close
to the target population fractions, i.e.,

Nc
π,γ

Nc
π

≈
N t
π,γ

N t
π

which they should be if the target/control assignment for a
user is chosen randomly and independent of the user.

For the purpose of predicting mean lift from future mes-
saging, it is possible that the context weights should be dif-
ferent. It depends on whether one expects the distribution
of users in the future to be much different from the past. As
mentioned in Section 2.3, in practice we take the probability
measure p(U) to be the empirical distribution of observed



samples, so the target population fraction remains the nat-
ural weighting. Consequently, the uncertain mean lift over
a subset π is described by a normal distribution:

r̄π ∼ N (µπ, σ
2
π)

µπ =
X
γ∈Γπ

„
N t
π,γ

N t
π

«
µπ,γ

σ2
π =

X
γ∈Γπ

„
N t
π,γ

N t
π

«2

σ2
π,γ .

As we will see in the next section, the procedure for generat-
ing the decision tree ensures that there are sufficient target
and control samples in each branch to support this approx-
imation.

There is a subtle technical issue with the normal approxi-
mation of mean KPIs from sample statistics (3) and (4): for
the statistics to be unbiased, the samples should be drawn
from the same distribution used to define the mean and vari-
ance. There is no concern in the space of users because the
chosen probability measure p(U) reflects the sample distri-
bution of users (or user attributes). However, in the space
of messages there is a potential discrepancy between the dis-
tribution of messages in the samples of π and the uniform
distribution used in (1) that arises from how the bandit is
played. It may happen that because of selections based on
previous decision trees one message is under-represented in
π, and the predicted mean KPI for that message will be
governed mostly by the observed KPIs of other messages in
π. This bias can be corrected by using weighted averages
in (3) and (4), with weights inversely proportional to the
prevalence of the respective messages in the samples of π.

2.5 Decision tree generation
Given a partition Π, the mean reward for a given u under

our Bayesian bandit selection rule (2) is

r̄Π(u) := E
ˆ
max
π∈Π

r̄π
˜

(8)

=
X
π∈Π

E[r̄π | r̄π = max
π′∈Π

r̄π′
˜

Pr
˘
r̄π = max

π′∈Π
r̄π′
¯

(9)

Ideally, the decision tree should be generated in a way that
tries to define a Π that maximizes the total mean rewardR
r̄Π(u) dp(U) while limiting the size of Π. Globally opti-

mizing this metric is obviously difficult, so we use a heuristic
branching scheme to generate the tree that tries to maximize
an upper bound for the effect of a local split on the global
reward (9).

The tree is generated recursively, starting with a single-
node tree representing the trivial partition Π = {U ×M}.
At each step, a leaf node of the tree, representing a subset in
the current partition, is split according to some predicate on
users or messages (e.g., u.Age>35 or m.Tone = ‘Urgent’),
creating a refined partition that splits subset π into π1 and
π2. In a fashion similar to the composition across contexts
(7), the mean lift for π (before it is split) can be written in
terms of the mean lifts for π1 and π2 as follows:

r̄π =

„
N t
π1

N t
π

«
r̄π1 +

„
N t
π2

N t
π

«
r̄π2 . (10)

The expression (10) will be compared to estimates of the
mean lift achieved after a split on user or message attributes,
to decide which split should be performed on a given leaf

node of the decision tree. The effect on mean lift depends
on the type of split, so they are considered separately below.

Split on messages.
If the split is on messages, the mean reward r̄π is replaced

by

r̄′π = max{r̄π1 , r̄π2}

in (8). The local gain in mean reward,

∆π1,π2 := r̄′π − r̄π,

is an upper bound on the achieved gain in r̄Π, since we
would have to have r̄π = r̄Π for the local gain ∆π1,π2 to
be fully realized. Nevertheless, we will use ∆π1,π2 as a way
to compare the merits of different splits.

Setting α = N t
π1/N

t
π for convenience, we have

∆π1,π2 = max{r̄π1 , r̄π2} − [α r̄π1 + (1− α)r̄π2 ]

= max{(1− α)(r̄π1 − r̄π2), α(r̄π2 − r̄π1)}.

Define the random variable

ε := r̄π2 − r̄π1 ∼ N (µπ2 − µπ1 , σ
2
π1 + σ2

π2),

and the truncated expectations

ε̄+ := E[max{ε, 0}]
ε̄− := E[min{ε, 0}] = µπ2 − µπ1 − ε̄+.

Then we have

∆π1,π2 = max{−(1− α)ε, α ε}
= max{−(1− α)ε, 0}+ max{α ε, 0},

because the terms in the first max have opposite signs. The
expected gain in mean lift is therefore

E[∆π1,π2 ] = −(1− α)ε̄− + α ε̄+

= ε̄+ + (1− α)(µπ1 − µπ2). (11)

Split on users.
If the split is on users according to predicate P (u), such

that

(u,m) ∈ π1 ⇔ (u,m) ∈ π and P (u),

then the new mean lift over π is distributed according to

r̄′π ∼ N (µπ1 , σ
2
π1) Pr{P (u) | ∃m : (u,m) ∈ π}+

N (µπ2 , σ
2
π2) Pr{¬P (u) | ∃m : (u,m) ∈ π},

where the probability is defined using the empirical measure
p(U). This is a simple Gaussian sum, since the predicate
P (u) is independent of the reward. The interpretation is
that when a given (u,m) ∈ π is evaluated for the multi-arm
bandit, the mean lift is assigned as a sample of either r̄π1 or
r̄π2 as appropriate, instead of a sample of r̄π which is a blend
of the two. The expected lift over all (u,m) pairs within π
does not change, since α = Pr{P (u) | ∃m : (u,m) ∈ π}.
However, there can be an effect on the global mean lift r̄Π

through interactions with mean lifts from other subsets.
For the purpose of obtaining an upper bound on the effect

of the split, suppose r̄π = r̄Π (as in the discussion of splits
on messages), and further suppose there is another subset
π′ 6= π from the partition such that r̄π′ = r̄π. Then any
increase in r̄π1 or r̄π2 relative to r̄π will appear as an increase



in r̄Π, but decreases will not affect r̄Π. The gain in mean lift
∆π1,π2 under these conditions is therefore positive.

The expected gain is given by

E[∆π1,π2 ] = αE[δπ1 ] + (1− α) E[δπ2 ]

where

δπ1 := max{r̄π1 − r̄π, 0}, δπ2 := max{r̄π2 − r̄π, 0}.

Substituting r̄π = α r̄π1 + (1− α)r̄π2 and ε = r̄π2 − r̄π1 , we
have

δπ1 = max{−(1− α)ε, 0}, δπ2 = max{αε, 0}

which implies

E[δπ1 ] = (1− α)(ε̄+ + µπ1 − µπ2), E[δπ2 ] = α ε̄+.

Therefore, the expected gain from the split is

E[∆π1,π2 ] = α(1− α)(2ε̄+ + µπ1 − µπ2). (12)

Selecting the split.
To summarize, when splitting a leaf node π, candidate

splits (π1, π2) are compared according to E[∆π1,π2 ], an up-
per bound on the increase in mean lift obtained by the splits,
defined by (11) or (12) depending on whether a given split
is on message attributes or user attributes. The split that
produces the greatest value is applied, producing two new
leaf nodes and a refined partition. The algorithm continues
splitting leaf nodes until there are no nodes with sufficient
target and control samples to justify splitting.

Both expressions for E[∆π1,π2 ] depend on the quantity
ε̄+ = E[max{ε, 0}] which indicates the degree to which r̄π2

exceeds r̄π1 . It may be computed from the following formula.
If x ∼ N (µ, σ2) then

E[max{x, 0}] = µΦ
“µ
σ

”
+ σ φ

“µ
σ

”
,

where φ and Φ are the pdf and cdf of the standard normal
distribution N (0, 1). Despite the asymmetry in ε̄+, the ex-
pressions for E[∆π1,π2 ] are symmetric in the sense that they
are invariant to exchanging (π1, α) with (π2, 1−α). Hence,
E[∆π1,π2 ] really depends on the absolute separation of the
distributions of r̄π1 and r̄π2 .

For the results presented in the next two sections, we used
a different measure of absolute separation to rank candidate
splits:

d(π1, π2) :=
|µπ1 − µπ2 |p
σ2
π1 + σ2

π2

. (13)

This metric may be seen as a proxy for E[∆π1,π2 ], given the
symmetry of ∆π1,π2 and the scaling of the mean differences
by the standard deviation inherent in the computation of
ε̄+. However, d(π1, π2) does not explicitly depend on the
population fraction α, so splits based on d(π1, π2) sometimes
have a tendency to isolate small subpopulations from the
rest, resulting in smaller aggregate effects on the total mean
lift r̄Π. Despite this flaw, Sections 3 and 4 show that trees
generated using d(π1, π2) have demonstrably improved the
mean lift when used for messaging decisions.

The decision tree generation algorithm is summarized in
Algorithm 1. In this description, categorical attributes of
users or messages are separated into a set of boolean at-
tributes, while continuous attributes are split along a set of
split points determined by Chickering’s K-tile method [7].

To handle missing data in either continuous or categorical
attributes, we use the MIA method approach discussed by
Twala [19].

Algorithm 1 Decision Tree Generation

1: Set Π = {U ×M}.
2: Choose a leaf node π ∈ Π with a sufficient number of

control and target samples for splitting. Our current
threshold is 500 samples each. If there is no such node,
stop.

3: for each user or message attribute a do
4: if a is boolean then
5: Split π into πa1 and πa2 according to a and ¬a

(which includes samples with no value for a), and
set da = d(πa1 , π

a
2 ).

6: else . a is continuous
7: for each split point ak, k = 1, . . . , Na do
8: Split π into π

ak
1 and π

ak
2 according to a > ak

and ¬(a > ak) (which includes samples with
no value for a), and set dak = d(π

ak
1 , π

ak
2 ).

9: Split π into π
ak
1
′

and π
ak
2
′

according to a < ak
and ¬(a < ak) (which includes samples with
no value for a), and set d′ak = d(π

ak
1
′
, π
ak
2
′
).

10: end for
11: Set da = max{dak , d

′
ak | k = 1, . . . , Na} and set

πa1 and πa2 corresponding to maximizer.
12: end if
13: end for
14: Choose a that maximizes da, and replace π with πa1 and

πa2 in Π.
15: Go to step 2.

3. SIMULATED EXAMPLE

3.1 Problem description
It is useful to run Grace on a simulated data set, both for

illustration purposes and for testing the platform. To this
end we designed a user simulator that generates simulated
user responses to marketing messages in a controlled way.
The simulator allows the creation of user cohorts that have
various pre-defined properties (such as Age and Gender).
Each cohort may have different baseline phone usage char-
acteristics (cohort 1 talks on the phone more than cohort
2, say), as well as different responses to marketing messages
(cohort 1 prefers message X over message Y , say). When
simulated users receive a message that they like, they use
their phone more than their cohort’s baseline usage amount.
Likewise, when users receive messages they dislike, they use
their phone less than the baseline. Using the phone more
(less) results in more (less) revenue generated by that user.

The workflow of running the user simulator is as follows:

1. Define messages. In this example, we created four mes-
sages: M1 through M4

2. Define cohorts. In this example, we simulated 50,000
users, each belonging to one of three cohorts:

(a) 40% females who like M1 and dislike M2.

(b) 20% females who like M2 and dislike M1.

(c) 40% males who like M2 and dislike M1.

All cohorts are indifferent to M3 and M4.



MessageID Equal 2
target:12777 control:12778

Gender Equal M
target:3201 control:3201

True
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Gender Equal M
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True

target:6332 control:6334

False

target:1306 control:1252

True

target:1938 control:1991

False

Figure 1: Decision tree trained on simulated user responses

3. Half of the 50k users are assigned to a “business as
usual” (BAU) group which are completely off-limits to
Grace. Users that are BAU members are not allowed
to be targets or controls. The BAU group is used to
evaluate global performance of the platform.

4. Choose the KPI to optimize. In this case we used 7
day revenue, which is the revenue generated by a user
in the 7 days following message delivery.

5. Configure experimental design. In this case we used a
7 day lockout, which means any target that received
a message in the last 7 days is ineligible for messages
today. Controls are subject to the same lockout period.

6. Run Grace for (at least) 7 simulated days where mes-
sages are picked randomly. This is to create training
data for the decision tree. Because of the lockout, mes-
sages will be “sent” only on the first of these 7 days.
It is necessary to run for at least 7 days so that the
7-day KPI can be computed. In this case the training
period lasted 14 days.

7. Train a decision tree on the data generated in step 6,
using the algorithm described in Section 2.5.

8. Run Grace for a further 7 simulated days, this time
using the decision tree trained in step 7 to pick mes-
sages.

3.2 Decision tree training
Figure 1 shows a truncated rendering of the decision tree

that was trained in Step 7 above (we truncated the tree for
display purposes in this article). For each node of the tree,
the following information is shown:

• Split predicate (for non-leaf nodes). For example the
split at the root node is on MessageID=2. True branches
are on the left, false branches on the right.

• Target and control counts supporting the node.

• A graph of distributions of mean lift across all contexts
in the node.

The distribution shown in a node is not quite the distribu-
tion of r̄π, which is always Gaussian. Instead, it is a Gaus-
sian mixture, with one mixture component per context and
targeting group, weighted by the population fraction. This
is a more informative way to visualize when significant dif-
ferences in mean lift are present across contexts or targeting
groups.

In this case, the root node is split by MessageID, and the
reason is clear from the bimodal shape of the distribution:
M2 performs more poorly on average than other messages.
But the rest of the nodes show no bimodal nature, meaning
either there is only one context contained in them or there
are no obvious differences in mean lift among the multi-



ple contexts. Nevertheless, the tree reveals large differences
in mean lift among subpopulations — in this case, gender.
Also note that the split on MessageID=1 at the second level
revealed a slight (but statistically significant) mean lift dif-
ference, but its main effect is to enable the much larger split
by gender at the next level of the tree. The tree training
has effectively picked out the cohorts that prefer one mes-
sage over another, allowing the multi-arm bandit to select
more effective messages for each user.

3.3 Performance results
Figures 2 and 3 show the action of running Grace on the

simulated data. In Figure 2, counts for each message M1

through M4 are shown. The dark bars show the message
counts before training a model when messages are sent to
targets at random, showing no preference of one message
over another. The light bars show message counts after
training, showing that the model strongly prefers to send
M1 and M2 over M3 and M4.

Figure 3 shows the percent revenue lift before and after
training a model, along with error bars reflecting 95% con-
fidence. Before training a model, M1 shows a slight positive
lift, and M2 shows a strong negative lift. After training
however, both these messages show strong positive lift. The
dramatic improvement of M2 is a demonstration of “getting
the right message to the right user”: M2 is in fact an over-
all loser when sent to the entire population, but is a strong
winner when sent to the right sub-population. The ability
to send the right message to the right user is one of the key
benefits of Grace.

Figure 4 shows normalized revenue for two groups of users,
BAU and Grace-addressable. Recall that the BAU group is
off-limits to Grace. This means that users in BAU never
receive any messages. Their behavior is determined entirely
from their cohort’s baseline behavior. The x-axis is a time
axis, showing the 25 days of the simulation. The y-axis is
revenue for a given day, normalized by the revenue produced
on day zero. For the first 14 days of the simulation, messages
were sent by Grace randomly for the purpose of gathering
data. Then a decision tree was trained and first used on
day 15, producing a pronounced spike in the Grace curve as
users respond to the optimized messages by recharging. A
second wave of revenue follows as users recharge after their
balance is used up.

4. PRACTICAL APPLICATION

4.1 Application description
In October, 2014, Grace was deployed by a mobile tele-

com in EMEA, which we will call Acme to protect identity.
Acme has a prepaid subscriber base of 2.2 million from a
variety of international backgrounds. Grace was configured
to send 450 different messages, at first just educational mes-
sages about existing products, then later with special offers.
The messages had several properties that could be optimized
by Grace, including reward/punishment phrasing, language,
product format, and time of day and day of week for sending
the message.

User attributes available for classifying users include:

• recharge amounts and timing;

• usage statistics for voice and SMS (separated by in-
bound vs. outbound, in-network vs. out-of-network,
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Figure 2: Message counts before and after model
training. Before training, all four messages were
sent with equal frequency. Afterward, M1 and M2

were strongly favored.
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Figure 3: Revenue lift per target, before and after
model training. The error bars for M3 and M4 are
large due to the suppressed counts for these mes-
sages.
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Figure 4: Simulated daily recharge revenue pro-
duced by Grace vs BAU. Model was enabled on
day 15. Additional revenue is realized when users
recharge on day 15 and in second wave of recharges
around day 21.



local vs. international) and data;

• nationality and language;

• statistics derived from social graph, such as PageRank
and revenue from ego network;

• derived properties such as cluster membership for var-
ious attributes.

Grace measured and attempted to optimize lift in recharge
revenue over the 14 days after sending the message. Once
a user is sent a message from Grace, that user is prevented
from receiving another message from Grace for 14 days, and
controls are locked out for the same period. The 14-day du-
ration is chosen because customers typically recharge multi-
ple times over this period, so we have a chance to determine
the impact on revenue beyond the initial purchase.

4.2 Deployment statistics
Because of the large amount of data Grace operates on, it

runs on a cluster of servers using Hadoop. In Acme’s case,
there are 3 Hadoop nodes comprising 24 cores, processing a
compressed data stream of 5 GB/day containing 62 million
records/day. Marketing decisions are made twice per day
using the latest decision tree, with new trees being generated
every few days.

4.3 Performance results
After one month of randomized messaging for training,

Grace started optimizing marketing in November, 2014, and
has been producing positive results for Acme since then. The
positive signal is not as strong at Acme as in the simulated
results presented in Section 3; however, when you multiply
even a small lift by a large subscriber base, the results can
be compelling.

In Figure 5, we show message frequency before and after
model training, for four messages from the same targeting
group, analogous to Figure 2. In Figure 6 we show the lift
generated by these four messages before and after model
training, analogous to Figure 3. Note that Grace converted
the first three of the messages from neutral or negative lift to
positive lift by refining the target audience, and increased
the relative frequency of these winners within the target-
ing group. The fourth message, M254, shows statistically
insignificant lift and is therefore sent less often. The fact
that it is still sent occasionally after training demonstrates
Grace’s exploration of messages with uncertain performance.

Figure 7 plots the cumulative increase in recharge revenue
over time provided by Grace in comparison to a separate
BAU group. The revenue is expressed as a percentage of an
average monthly revenue baseline from before deployment.
The effects of various events that occurred along the time-
line from 10/2014 through 2/2015 are visible in the revenue
curve. At first, the revenue lift is fairly flat (tracking BAU)
while the system is training, until Grace starts optimized
marketing on 11/24/2014. Soon afterward the lift rises dra-
matically, but the rise is interrupted on 12/15/2014 when
the data feed is accidentally cut off and Grace is forced to
use increasingly stale data in its marketing decisions. Mar-
keting is turned off on 12/22/2014, and the revenue lift con-
tinues to drop. Data covering the period of interruption is
received a week later, and used to train a new decision tree.
When marketing is re-enabled on 12/31/2014, the lift in-
creases again. This unintended sequence of events provides
a sort of “natural experiment” that bolsters the claim that
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Figure 5: Acme message frequency before and after
model training.
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Figure 7: Cumulative recharge revenue lift for Acme



Grace’s optimized messaging is the cause of the increased
revenue.

5. CONCLUSIONS
In this paper we have described the software platform

Grace for automatic optimization of marketing campaigns
at the scale of hundreds of millions of targets. Grace mea-
sures the lift in a designated KPI using carefully controlled
experiments, and it optimizes lift using a novel combina-
tion of multi-armed bandits and learned decision trees for
segmenting the user and message space. It solves the ex-
plore/exploit trade-off by employing a Bayesian approach
to decision-making, in the form of Thompson sampling.

We presented simulation results on a simple problem to
show how Grace produces lift by learning to send the right
message to the right user. Finally, we described the deploy-
ment of Grace in a prepaid telecom application with millions
of users and hundreds of different messages, and we showed
the platform creating real value over time.

Future plans for Grace include extensions to optimize mul-
tiple KPIs, enhancement of the architecture to accommodate
real-time interactive decisioning (e.g., in customer call cen-
ters), and application to other domains including financial
services, online gaming, and e-commerce.
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