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ABSTRACT 

In this paper we present a new set of signal features 
that can be used for modulation classification of digital 
communication signals in a blind environment. These new 
features are based on circular summary statistics taken from 
the instantaneous frequency of the sampled signal. The in- 
stantaneous frequency of a sampled baseband digital signal 
is expressed in radians. We consider the sampled instanta- 
neousfiequency as a set of realizations of a circular random 
variable and apply circular SM~TWUJTY statistics to extract 
classijcation features. in particula< we use trigonometric 
moments of the instantaneous fi-equency to create feature 
vectors. We address the problem of distinguishing between 
FSK-type signals and QAM-type signals; and subsequently, 
the problem of discrimination between the FSK-bype signals. 
We show that in both problems the signal classes are well 
separated in the circular statistics feature space and that 
automatic class$ers can be dejined wifh simple thresholds. 

I. INTRODUCTION 

Blind demodulation systems for applications such as 
surveillance, threat identification,.' and, electronic warfare 
are of great interest to the miIitary. Accurate modulation 
classification of unidentified digital signals in a blind en- 
vironment is a critical first step. Well known decision- 
theoretic based modulation classification techniques based 
on features extracted from the signal instantaneous ampli- 
tude, instantaneous phase, andor instantaneous frequency 
have been proposed [1]-[3]. In this paper we present a 
simple decision-theoretic classification approach based on 
features extracted solely from the instantaneous frequency. 
This technique is unique in that we consider the instanta- 
neous frequency of the sampled received baseband signal 
as realizations of a circulary-distributed random variable, 
and extract features using circular summary statistics. Un- 
like [ 1]-[3 1, our method can classify higher-order modula- 
tion and continuous phase signals by using features from 
the instantaneous frequency only. 
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We first address the problem of distinguishing between 
FSK-type signals and QAM-type signals. This coarse clas- 
sification step is needed to choose the correct demodulation 
path in a blind demodulation system. The instantaneous 
frequency of FSK-type signals is, in general, a PAM signal 
which may or may not contain impulses depending on the 
continuity of the phase. The instantaneous frequency of 
QAM-type signah will always contain impulses at symbol 
transitions and is a function of the pulse shaping filter 
derivative within each symbol period. We will show that 
the features derived from circular summary statistics of 
the instantaneous frequency can be used to recognize this 
difference. We then address discrimination between the 
FSK-type signals. We will show that in both problems the 
signal cIasses are well separated in the circular statistics 
feature space and that automatic classifiers can be defined 
with simple thresholds. 

The paper is organized as follows. In Section II we 
give a brief description of the circular summary statistics 
used for feature extraction. In Section ID we show that 
the discrete instantaneous frequency of a complex baseband 
signal can be interpreted as a circuIar data set and give 
motivation for using it to classify FSK-type and QAM-type 
signals. In Section IV, we first present the new classification 
features, and then give synthetic and real-world examples of 
FSK-type and QAM-type classification and of classification 
among FSK-type modulations, Finally, concluding remarks 
are given in Section V. 

II. CIRCULAR SUMMARY STATISTICS 
Circular summary statistics are concerned with the sta- 

tistical analysis of data samples that take angIes as val- 
ues. These data samples are realizations of a circularly- 
distributed random variable [4]. Analogous to linear statis- 
tics, moments of a circular random variabIe (trigonometric 
moments) are defined in terms of its probability density 
function. Measures of spread and symmetry, i.e., variance 
and skew, can be defined in terms of these moments. 
Circular kurtosis, a measure of peakedness in the circular 
density, can also be defined. As in the linear case, summary 
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statistics for circular data are used to compute estimates 
of theoretical values from samples of circular data. In 
this section we briefly describe the sample trigonometric 
moments and the corresponding variance, skew and kurtosis 
formulas. A more complete description of trigonometric 
moments and other statistical methods for circular data can 
be found in [4]. 
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(a) Histogram of circular data. 

(b) First-order trigonometric moment, p1. 

Fig. 1. (a) Histogram of circular data sample, 8. The data is 
unimodal, and centered around 2.34 radians. (b) The complex first-order 
trigonometric moment, p l ,  of 8. The mean direction, Lp1, gives the 
center of the unimodal data sample. 

Sample Trigonometric Moments 
Let 0 = (0,) be a set of K data points in the range 

[O, 27r). The first-order sample trigonometric moment of 8 
is given by 

k =O 

This complex number can be interpreted as the resultant 
vector sum of K unit vectors with angIes given in 0. This 

resultant vector has length 1~11 and lies at angle Lp1 in 
the complex plane. Lp1 is termed the mean direction of 
0. Figure I(a) shows a histogram of an example data set 
Q. Note that the abscissa is over the range [ 0 , 2 ~ ) .  It is 
constructive to picture the abscissa as wrapped around the 
unit circle. The data is unimodal, centered approximately at 
2.4 radians. Figure l(b) shows p1 (marked by x )  for this 
data in reference to the unit circle, where we see that 
has an angle of approximately 135 degrees, or Lpl  M 2.36 
radians. 

In generaI, the pth-order sample trigonometric moment 
is given by 

(2) 
1 K - l  

p p  = e J P O k ,  
k=O 

and can be interpreted as the first-order moment of the data 
set W, defined by 

0* 5 { p  - 81, mod 2n). (3) 
As in the case of linear statistics, measures of spread, 
symmetry, and peakedness in the underlying probability 
density can be defined in terms of these moments. 

Circular Variance, Skew, and Kurtusk 
Variance, skew, and kurtosis are descriptive statistics 

used for linear data that give, respectively, measures of 
the spread, symmetry, and peakedness of the underlying 
probability density of the data. These measures are aIso 
defined in the case of circular data. In terms of the sample 
trigonometric moments they are given by [4], 

(variance) P* = 1 - 1p1/ (4) 

(kurtosis) = ( ip2i eCL2 - 2 ~ ~ ~ )  - iP1i4) (oz)2. 

(skew) y = Ipzl sin (Lp2 - 2Lp1) / (cr'); ( 5 )  

(6)  

The use of oz to denote variance is strictly notational in 
this case. For circular data, the standard deviation is not 
the square root of u2, but is 

t7 = d(-Zln IPll). (7) 

111. INSTANTANEOUS FREQUENCY 
CLASSIFICATION FEATURES 

To show how the trigonometric moments defined in 
the previous section can be applied to the instantaneous 
frequency of a signal, we start with a discrete-time model 
of the complex baseband signal, 

s[n] = A(t)&"(f)I , 
t=nT, 

where A(t )  and p(t) are, respectively, the instantaneous 
amplitude and instantaneous phase of the continuous-time 
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signal, and T’ is the sampling period. The instantaneous 
frequency of the signal is defined as the derivative of 
the instantaneous phase, cp’(t). An approximation to the 
sampled instantaneous frequency, cp‘(nT,), is given by 

Note that f [n]  is in radians, with values in the interval 
[ 0 , 2 ~ ) .  Thus, f[n] can be considered as circular data and 
the trigonometric moments defined in the previous section 
can be applied. 

Figures 2 and 3 show the histograms of fin] for some of 
the digital signal types considered in this paper. Note the 
similarity of the QAM-type signals in Fig. 3. Qualitatively, 
these are distinctly different from the histograms for the 
FSK-type signals in Fig. 2. We next analyze f[n] quanti- 
tatively, using trigonometric moments to distinguish signal 
classes. 

2 3 4 5 

(a) CFSK 

1 2 3 4 5 
R.danS 

(b) GMSK 

Fig. 2. , Instantaneous frequency histograms for 4 F S K  and GMSK. 
As expected, “spikes” appear in the histograms due to the keying 
frequencies. This is in contrast to the ‘‘~mooth.’ instantaneous frequency 
histograms of 8-PSK and WQAM shown in Fig. 3. 

m. 

(a) 8-PSK 

Fig. 3. Instantaneous frequency histograms for 8-PSK and 64-QAM. 
These histograms are similar but distinctly different from the histograms 
of CFSK and GMSK shown in Fig. 2. 

IV. MODULATION CLASSIFICATION USING 
TRIGONOMETRIC MOMENTS 

In this section we analyze the instantaneous frequency 
trigonometric moments of simulated and real-world FSK- 
type and QAM-type signals. We then show that features 
derived from these moments can be used for modulation 
classification. We first address c o m e  modulation classifi- 
cation, i.e., the problem of distinguishing FSK-type sig- 
nals from QAM-type signals. The FSK-type signals we 
consider are (2,4)-FSK, (2,4)-CPM, MSK, and GMSK, 
and the QAM-type signals we consider are (2,4,8)-PSK 
and (16,32,64,256)-QAM. We then addressjna modulation 
classification of the FSK-type signals, i.e., distinguishing 
among the FSK-types. 

ClassGCation of FSK-Type and QAM-Type Signals 

We begin by simulating digital signals with: 
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I )  Sampling frequency of 46387.33 Hz. 
2) Symbol rate of 10 KHz, except for 2-CPM and 2- 

FSK, where the symbol rate is 5 KHz. 
3) Root-raised cosine pulse shaping for all PSK, QAM 

and partial-response CPM signals (except GMSK), 
with rolloff of 0.35. 

For each signal type, trigonometric moments are calculated 
for each of 113 data frames. The frame length is K = 2048 
samples, approximately 440 symbols (220 symbols for 2- 
CPM and 2-FSK). Signals are generated at two S N R  levels, 
14 dB and I 1  dB. 
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Fig. 5 .  (a) l p ~  1 versus Ipl I for simulated digital signals at 1 I dB SNR. 
@) Kurtosis versus variance. The FSK-type and QAM-type clusters are 
well separated in both planes. Even at this lower S N R  a simple 1-D 
classifier can still be defined by thresholding the kurtosis at K. = 3. 

o 0.1 OP 0 3  04 0.5 0.6 0.7 0.8 0.8 I 

Fig. 4. (a) Ip~zl versus Ipl I for simulated digital signals at 14 dB SNR. 
(b) Kurtosis versus variance. The FSK-type and QAM-type clusters are 
well separated in both planes. A simple I-D classifier can be defined by 
thresholding the kurtosis at K = 3. 

In general, the directions of the trigonometric moments, 
LpP, are clustered near zero or T for a11 signal types. 
This is due to circular symmetry in the instantaneous 
frequency of digital signals with respect to one of these 

points (see Figures 2 and 3). Thus we focus on the moment 
magnitudes, I,upl. Figure 4(a) shows a plot of Ip.~21 versus 
1~11 for all signals at SNR = 14 dB. Note the formation 
of distinct clusters for many signal types, e.g., 4-FSK, 
MSK, and 2-CPM. More importantly, for the purposes 
of coarse classification, there is no overlap of the FSK- 
type and QAM-type clusters. Figure 4(b) shows a plot 
of variance versus kurtosis, as computed using Eqs. (4) 
and (6), respectively. At this SNR we can define a simple 
1-D coarse classifier to distinguish FSK-type from QAM- 
type signals by thresholding the kurtosis at n = 3. Figure 5 
shows the same results for signals at an SNR of I 1  dB. At 
this lower SNR there is still no overlap between the FSK- 
type and QAM-type clusters, and the simple 1-D classifier 
defined by thresholding the kurtosis at 6 = 3 remains valid. 
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Fig. 6.  (a) (pz I versus Ip1 I for real-world digital signals at approximately 
14 ds relative SNR. (b) Kurtosis versus variance. The results are nearly 
identical to those for simulated signals shown in Figure 4. The FSK-type 
and QAM-type clusters are well separated in both planes. A simple l-D 
classifier can be defined by thresholding the kurtosis at K. = 3. 

We now perform a similar analysis on real-world digital 
signals.' Figure 6 shows the trigonometric moment mag- 
nitudes for FSK-types (2,4)-CPM, MSK and GMSK, with 
QAM-types identical to that of the synthetic signals. The 
signal parameters of the real-world signals are identical to 
the synthetic signals, with approximate SNR of 11 dB. The 
results are comparable to the simulated results of Figure 4. 
Again, a 1-D classifier can be defined by thresholding the 
kurtosis at IC, = 3. 

It is important to note that in the above analysis of the 
red-world signals no attempt was made to remove any 
residual carrier. Indeed a coarse classifier defined in the 

'All real-world signals used here were provided by Dr. Wei Su ot 
U. S .  Army RDECOM. 

I ~ I ( - ( , u ~  I or 0 2 - ~  planes would be invariant to the existence 
of constant residual camer. To see this let Z ( t )  denote the 
baseband signal with residual carrier, i.e., 

s(f) = A(t)eI('P(t)+%et) (10) 

where QTc is the residual canier frequency in radianshec, 
It follows from Eq. (9) that the approximate sampled 
instantaneous frequency of S ( n )  is given by 

f[n] =L (+]s*[n - I]) 
=cp [nTs] - 'p [(n - W S l +  ~ s % c  

=m + Tsfl7-c- (11 )  

Thus, the addition of residual carrier results in a circular 
shift of f[n] by T,R,, radians. The histogram of f [ n ]  is a 
circularly shifted version of that for f[n]. The magnitudes 
of the trigonometric moments for f[n] and f[n] are thus 
identical. It follows from Eq. (4) that the variance is 
unaffected by circuIar shifts, and the same can be shown to 
be true for the kurtosis. 

Egects of Pulse Shape Rollof: The pulse-shaping filter 
for both the synthetic and real-world signals was a root- 
raised cosine with rolloff of 0.35. We now repeat the same 
analysis on synthetic signals generated with root-raised 
cosine filters of various rolloffs. Figure 7 shows the gz - K. 

feature space for rolloff values of 0.2, 0.5, and 0.9. We see 
that an increase in rolloff causes a decrease in kurtosis in the 
QAM-type signals. However, the FSK-type and QAM-type 
signals remain separated in the IT' - K plane. A threshold of 
K = 1 can be used, at this SNR level, for all rolloff values 
if the median of the kurtosis over all signal frames is used 
as the classification feature. 

Efects of Increased Noise Level: We now examine 
the effects of lower S N R  on the trigonometric moment 
classification features. Figure 8 shows the results for real- 
world signals with approximate SNR.of 5 dB. The increased 
noise level has, in general, increased the kurtosis of the 
FSK-type signals and decreased the kurtosis of the QAM- 
type signals. Although the FSK-type and QAM-type signals 
remain separated in the CT' - )i plane, a simple 1 -D classifier 
defined by thresholding the kurtosis is no longer possible. 
In this case a 2-D classifier must be employed. 

Discrimination of FSK-Type Signals 
After the received signal has been determined to be 

an FSK-type, a final classification decision must be made 
among the continuous-phase FSK-type signals. In this sec- 
tion, we show that the magnitudes of the first- and second- 
order trigonometric moments, 1~11 and Ipzl, can be used 
for the classification of FSK-type signals. 

Figure 9 shows a scatter plot of the first and second 
trigonometric moment magnitudes for real-world FSK-type 
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signals at approximately 14 dB and 11 dB. Four sec- 
onds of each signal type were segmented into frames of 
length 2048 (approximately 90 frames for each signal). The 
trigonometric moments were then computed for each frame. 
Four FSK signal types were tested: (2,4)-CPM, MSK, and 
GMSK. At these S N R  leveIs the four signal types are clearly 
distinguishable in the - 1 ~ 2 1  feature space. Simple 
thresholds can be defined to distinguish the four signal 
types. MSK and GMSK can be distinguished from the 
CPM signals by thresholding Ip21 at 0.62. SubsequentIy, 
MSK and GMSK can be distinguished by thresholding 1 ~ 2 1  

at 0.845. Finally, 2-CPM and 4-CPM are distinguished by 
thresholding lpll at 0.57. 

V. CONCLUSION 
We have shown that trigonometric moments of 

the instantaneous frequency can be used to extract 
classification features from baseband digital signals. These 
features resulted in simple 1-D classifiers at moderate SNR 
levels. We used these features for coarse classification of 
FSK-type and QAM-type signals and for fine cIassification 
among the FSK-type signals. We found that these features 
were robust to higher-order modulations, e.g., 256-QAM, 
and constant carrier offset. We have also shown that the 
threshold in circular kurtosis for coarse classification is 
generally dependent on the pulse shape but that a single 
threshold can be used if the median circular kurtosis over 
a number of signal frames is taken as the classification 
feature. At low SNR, the signal classes remained separated 
in the feature space; however, non-linear classification 
techniques must be employed. 
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Fig. 7. The u2 - K feature space for synthetic signals generated with 
root-raised cosine filters with rolloff parameter values of (a) 0.2, (b) 0.5, 
and (c) 0.9. 
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Fig. 9. The trigonometric moment feature space for classification 
of real-world FSK-type signals. Simple thresholds can be used for 
distinguishing: (G)MSK from CPM (1pz1 = 0.62); 2-CPM from CCPM 
(Ipll = 0.57); and MSK from GMSK ( 1 1 . ~ ~ 1  = 0.845). 

Fig. 8. (a) 1p1 I versus for real-world digital signals at approximately 
5 dB relative SNR. (b) Kurtosis versus variance. The FSK-type and 
QAM-type clusters remain well separated in both planes. A simple 1- 
D classifier defined by thresholding the kurtosis at K = 3 is no longer 
possible. A robust 2-D classifier, however, can be defined. 
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